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In other words, D(n) is a function of n2 variables a,, which vary over the bounded 
and closed domain D: II ak f < K}; hence this function is bounded and attains its 
maximum value on the boundary of the domain LD. 

Proof. Let ajk = rkei?jk and A jk = R -ke j = the co-factor of afk, where 
K _ rjk ? 0 and Rk. 2 0. Then, expanding by the jth row, we have 

| D(n) = E ajkAjk E rjkRjk ei(OJk+Ok) 
(2) k-l k-i 

< E2 rjkRjk s E KRjk = D (n), 
k-i k-i 

where D'(n) is the nth order determinant whose entries are 

(as, if rk = K and Ojk + Ojk- 0 (mod21r), 

OKe i, if rjk < K or Ojk + 'jk o 0 (mod 2X)). 

By applying the same process to the other rows, we obtain a determinant D*(n) 
whose entries I a** = K and I D*(n)I 2 I D(n)/. Hence, Max IajkIK I D(n)j _ 
Maxlaj,.K I D(n) I; thus the proof of the theorem can be completed since the re- 
verse inequality is trivial. 
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1. Introduction. Most finite difference formulae in common usage for the nu- 
merical solution of first-order differential equations are based on polynomial ap- 
proximation. Two exceptions are the formulae based on exponential approxima- 
tion proposed by Brock and Murray [1], and the formulae of Gautschi [2] which 
are derived from trigonometric polynomials. The use of rational functions as ap- 
proximants has been studied by many authors, including Remes [3], Maehly [4] 
and Stoer [5], but the main concern of most of this work has been the direct ap- 
proximation of a given function. Algorithms for interpolation based on rational 
functions have been proposed by Wynn [6], and methods for numerical integration 
and differentiation based on Pad6 approximation have been studied by Kopal [71. 
It is the purpose of the present paper to derive a class of formulae, based on ra- 
tional approximation, for the numerical solution of the initial value problem 

(1) Y = f(X, y), y(xo) = yo . 

The formulae proposed give exact results when the theoretical solution of (1) is a 
rational function of a certain degree, just as many of the classical difference formulae 
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give oxact results when the theoretical solution is a polynomial of the appropriate 
degree. 

Formulae based on polynomial approximation frequently give poor results if the 
integration of (1) is pursued too close to a singularity. It will be demonstrated 
that the class of formulae proposed can give better results in such circumstances. 

2. Derivation of the Formulae. The method of derivation will first be used to 
'obtain one of the well-known polynomial formulae. 

Along the x-axis, consider the points xr to be given by 

Xr = Xo+ rh (r = 0, I, 2) 

where h is the distance between consecutive points. The formula to be derived will 
predict values of Yr which will approximate to Y(Xr), the theoretical solution of (1) 
at Xr . Let us assume that the solution of (1) is locally represented in the range 
[Xn xX+2] by the polynomial 

4 

(2) F(x) = Z asx . 
3=O 

This polynomial must pass through the points (xa, y1,), (x.+1, Yn+i), (x?+2 , Yn+2), 
and, moreover, must assume at these points the slopes given by y' -f(x, y). 
The following six equations must then be satisfied. 

(3) F(x,+j) = y,+jX F'(xn+j) = fnti (j = 0, 1 2), 

where fr = f(Xr , Yr). The eliminant of the five undetermined coefficients a, from 
the six equations (3) is the familiar Simpson's rule, 

(4) Yn+2 -Yn = 
h 

(f?+2 ? 4fn?, + fn). 

The same approximant (2) can also be used to derive a two-point formula involv- 
ing higher derivatives of f, which can be calculated using (1). Thus 

(s+1) = (s) _ dif (f(S-l)) & + (f(S3-l)) f (s - 1, 2 3 ) 

where f(O) = f. The eliminant of the a, from the six equations 

F(xn+j) = n-+j , F'(xn+?) = f,+j X F"(x.+j) = f( )j (j 0, 1) 

is 

h ++ _ h2 (f i f (1)1- ) X Yn1- Yn - (fn?l + fn) - n ( n'A- ' 
2 1 

one of the class of formulae derived by Lambert and Mitchell [8]. 
This method of derivation, although tedious by comparison with that employed 

in [8], has the virtue that it can be applied when the basic polynomial approximant 
F(x) is replaced by a rational approximant 

R(x) = P(x)jQ(x), 

where P(x) is a polynomial of degree p, and Q(x) a monic polynomial of degree q. 
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3. Explicit Formulae. Let k + 1 be the number of points utilized in the formula, 
and let 1 be the order of the highest derivative of y involved. Then an optimum 
class of explicit formulae can be derived if 

(5) k(l + 1) + 1 = p + q + 2. 

The most useful class of formulae is obtained by putting k = q = 1, that is, a class 
of two-point formulae based on a rational approximant whose denominator is a 
linear function. It follows from (5) that derivatives of up to order p + 1 must be 
employed. Applying the method described above to the approximant 

(6) R(x) = a8 x / (bo + x), 

the following eliminant is obtained. 
p-1 +af(81 hp (p + 1) (fn 

(P1)) 

(7) Yn+1- - Yn - (7) 
ant- ~ Un = 1 8 in + 

pi (p + 1)fn(P-1) - hf(P) 

Taylor expansion of (7) shows that the associated principal truncation error is 

hp+2 Y(p+2) (Y(P+1))2 ] 
(p +l)! p + 2 (p + l)y(p) 

Each formula of class (7) is seen to be a Taylor series with a rational correcting 
term, and, being a two-point formula, cannot suffer strong instability. 

The class of three-point formulae based on the approximant (6) will require, by 
(5), that p = 21, that is, the numerator of the rational approximant must be of 
even degree. The general formula of this class is very unwieldy, and only the first 
two members are quoted. 

p = 2, q = 1: 3Yn+2- 4yn+ + yn - (2fn+l + fn) 

(8) + 
4h2 (fn+l-fn)2 
3 3(yn+ - yn) - h(fn+l + 2fn) 

Truncation error: h4 ( (4)+ 2 (y__)); 2 3 y(2) ) 
2h 2h 2 

p = 4, q = 1: = (8fn+ + fn) + 2 n 

4h2 [2 ( fn+l -ffn) -h (f1) + fn 1)]2 
9 18(yn+1 - Yn) - 2h(4fn?l + 5fn) + h2(f (l) -2fn(l)) 

Truncation error: h6 ( 1 (6) + - 
(8(B))2) 75jY y(4) 

Expansion of the rational terms in formulae (8) and (9) shows these terms to be 
of orders h' and h4, respectively. Thus formulae (8) and (9) have the interesting 
property that they do not exhibit strong instability in the Dahlquist sense. The 
corresponding formulae based on polynomial approximation, as derived in [8], are 
both strongly unstable. 
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For fixed values of k and 1, a formula based on an approximant with p = p*, 
q = q* will give, for the problem (1), an algorithm identical with that which would 
be obtained from a formula based on an approximant with p = q*, q = p *, applied 
to the problem formed by applying the transformation g = 1/y to (1). It follows 
that the next approximant which should be considered will have p = q = 2. The 
simplest formula based on this approximant is given by k = 1, 1 = 4, and is 

yn+i - yn - hfn + h2 

(10) 6f8(l)[(3fn(l))2 - 2fnfnI2)] + hfn[3fn _ 4(f 

12[3(fn 1))2 I 2ff2]+ 6h[ffnff 2fn (1)-fn (2)] + h [4(fn ) -3f(lf()] 

_ 1 1 8(Y(3))3 -3(1) (Y(4) 

Truancation error: h5 
- 

-~ Y + 14 (y(2))2 2y(1)y(3)J 

It should be noticed in passing that formula (10) and the formulae of class (7) 
are applicable as quadrature formulae for the evaluation of fab f(x) dx, particularly 
when the range of integration is close to, or includes, a singularity of f(x). 

If, during a calculation, the denominator of the rational term in any of the pro- 
posed formulae becomes zero (or very nearly so) at a station at which it is known 
that the theoretical solution of (1) does not have a singularity, then the mesh 
length must be altered, or, if this remedy fails, a different formula must be used. 
(In this context, it would appear that two-point formulae cause less trouble than do 
those with three points.) A change of sign of the denominator would indicate that a 
pole of the approximant R(x) had fallen within the local range of application of the 
formula-a situation analogous to that of a polynomial approximant which becomes 
oscillatory within the local range of application of the associated formula. Although 
it can be argued that the local intervention of a pole is potentially more serious 
than the onset of an oscillation, the formulae based on rational approximation have 
the advantage that the occurrence of this difficulty during a calculation is easily 
detected by keeping a separate check on the behaviour of the denominator. The 
onset of polynomial oscillation in classical formulae is much more difficult to detect. 

4. Implicit Formulae. Implicit formulae can be obtained if 

(11) (k + 1)(1 + 1) = p + q + 2. 

Two-point formulae with q = 1 can therefore be obtained only if p is odd, and then 
derivatives of y up to order (p + 1)/2 must be employed. The first two formulae 
in this class are 

P q = 1: Yn+l - Yn = h 2 fn fn+l 
(12) yn?1 

- yn 

Truncationerror: h3 6 +'(2)2 

p =3,q =1: Yn+1 Yn 

2 4(fn+l -fn)2 + 12fn fn+l + 2h(fn f -fn4() fn+1) + h2ffn 
W 

f (1) 
(13) 12(yn+l- yn) - 12h(fn+l +f,,) 2h2(f1 fn(l)) 

Truncation error: h5 [ 1 y(5) + i(y )2] 
L 720 ~ 576 y(3)J 
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It is of interest to observe that (12) equates (yni+ - yn)/h to the geometric mean 
of fn and fn+l, while the corresponding formula based on a polynomial approximant 
equates the same expression to the arithmetic mean of fn and f.+, . 

In view of the strong stability of the three-point explicit formulae already de- 
rived, there would appear to be little point in quoting comparable implicit formulae, 
which, in any case, turn out to be excessively unwieldy. 

5. Numerical Results. The example used to illustrate the formulae derived 
above is the initial value problem 

(14) y -1 + y2, Y(0) = 1, 

whose theoretical solution is y = tan (x + tr/4). 
A comparison is made on the basis of two-point formulae. Problem (14) is 

solved, first using formula (10), and secondly using the formula of class (7) ob- 
tained by setting p = 3. This gives 

Yn+1 - Yn hf + + 6 (15) hn~l-yn 1 hen + 2 An + 64f (2) _ hfX(3) 

Truncation error: 24 [ y + 4 (2) 

Both of these formulae are explicit, involve two points, and utilise derivatives of y 
up to order four. The corresponding formula based on a polynomial approximant 
is the truncated Taylor series formula, 

Y 
+1 an 

-hfn + h f (1) + 6y(2) h (8)n Yn+1 -Yn + hfn +n24 

(16) 

Truncation error: - 20 h5y(6). 

TABLE I 

T'wo-poi'nt Formulae 

| Theoretical FFormula (li6) Formula (15) Formula (10) 
Z T Solution Polyaomial Rational p = 3, Rational p = 2, X Solution Polynomial ~q 1q = 2 

0 1.000,000,000 1.000,000,000 1.000,000,000 1.000,000,000 
0.05 1.105,355,590 1.105,354,167 1.105,355,556 1.105,355,575 
0.10 1.223,048,880 1.223,045,160 1.223,048,805 1.223,048,846 
0.15 1.356,087,851 1.356,080,366 1.356,087,728 1.356,087,792 
0.20 1.508,497,647 1.508,483,855 1.508,497,464 1.508,497,556 
0.25 1.685,796,417 1.685,771,749 1.685,796,159 1.685,796,284 
0.30 1.895,765,123 1.895,720,992 1.895,764,765 1.895,764,932 
0.35 2.149,747,640 2.149,667,006 2.149,747,147 2.149,747,367 
0.40 2.464,962,757 2.464,809,445 2.464,962,070 2.464,962,364 
0.45 2.868,884,028 2.868,574,494 2.868,883,051 2.868,883,451 
0.50 3.408,223,442 3.407,542,560 3.408,222,003 3.408,222,567 
0.55 4.169,364,046 4.167,671,633 4.169,361,803 4.169,362,642 
0.60 5.331,855,223 5.326,819,985 5.331,851 409 5.331,852,773 
0.65 7.340,436,575 7.320,574,452 7.340,429,058 7.340,431,623 
0.70 11.681,373,800 11.552,695,821 11.681,353,989 11.681,360,445 
0.75 28.238,252,850 25.710,677,828 28.238,132,170 28.238,169,733 
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Formulae (10), (15) and (16) all have the same order of principal truncation 
error. The numerical solutions of (14) by these three formulae are given in Table I, 
together with the theoretical solution. A mesh length of h = .05 was used, allowing 
the last station to be x = .75, whereas the singularity of the theoretical solution is 
at x = .7854. The calculations were done on an IBM 1620 computer, working, 
in floating point, to fourteen decimal places. 

It is seen from Table I that the performance of the formulae based on rational 
approximants is markedly better than that of the polynomial-based formula. 

The same problem is solved again by the three-point formula (9), in order to 
illustrate a remark made in Section 3. The corresponding optimum formula based 
on a polynomial interpolant, using the same points and derivatives as (9), is shown 
in [8] to be strongly unstable. The nearest stable polynomial formula for comparison 
purposes is the following, also taken from [8]. 

Yn+2 -n = 2hfn + 3 (2fjA1 + fn(l)), 

(17) 
Truncation error: - 

2 
h"y ( 

Table II shows the numerical solutions of (14) by these two formulae. This time 
the polynomial formula is better than the rational, but neither is good. However, a 
separate print-out of the denominator of the rational term in (9), quoted in the last 
column of Table II, shows that the pole of the rational approximant intervenes 
frequently, indicating that formula (9) is unsuitable for the problem in hand. 
(Indeed, it can be seen that formula (9) gives a better result than (17) up to x = .20, 
where the pole of the approximant intervenes for the first time.) The denominators 

TABLE II 
Three-point Formulae 

Theoretical Formula (17) Formula (9) 
x 

Solution Polynomial 
Rational p = 4, Denominator 

0 1.000,000 1.000,000* 1.000,000* 
0.05 1.105,356 1.105,356* 1.105,356* 
0.10 1.223,049 1.223,039 1.223,049 -0.000,044,308 
0.15 1.356,088 1.356,073 1.356,088 -0.000,061,787 
0.20 1.508,498 1.508,462 1.508,506 -0.000,084,800 
0.25 1.685,796 1.685,738 1.681,962 +0.000,010,870 
0.30 1.895,765 1.895,652 1.894,095 -0.064,401,230 
0.35 2.149,748 2.149,548 2.144,446 +0.047,904,767 
0.40 2.464,963 2.464,571 2.459,798 -0.053,803,086 
0.45 2.868,884 2.868,107 2.858,529 +0.023,417,882 
0.50 3.408,223 3.406,506 3.392,591 -0.058,975,769 
0.55 4.169,364 4.165,158 4.139,087 -0.026,305,965 
0.60 5.331,855 5,319,554 5.265,304 -0.119,863,183 
0.65 7.340,437 7.293,760 7.154,805 -0.277,808,720 
0.70 11.681,374 11.404,247 10.924,394 -0.872,469,219 
0.75 28.238,253 23.995,397 21.269,964 -3.540,801,901 

Starting values are marked with an asterisk. 
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of the rational terms of the two-point formulae (10) and (15), on the other hand, are 
of constant sign throughout the computation. 
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The Numerical Solution of Eigenvalue Problems 
By Theodore R. Goodman 

1. Introduction. Onie method for solving eigenvalue problems on a digital 
computer is to convert the governing differential equations to finite difference 
equations, apply the boundary conditions at either end of the interval, and form a 
secular equation for the unknown parameter (the eigenvalue) by setting the de- 
terminant associated with the resulting set of homogeneous algebraic equations 
for the ordinates of the solution equal to zero. Another way of solving, eigenvalue 
problems is to use the Galerkin method. This consists of assuming the solution to 
be expanded in a complete set of functions satisfying the boundary conditions; 
upon introducing the series into the differential equation and requiring the error 
to be orthogonal to the functions in the set there results an infinite set of homoge- 
neous equations for the coefficients. The secular equation is formed by setting the 
associated determinant equal to zero. These formulations invariably require the 
determination of the roots of a determinant of large order. The methods arise 
naturally out of the very nature of an eigenvalue problem and are seen to utilize 
the capability of digital computers to manipulate matrices of large order. 

A completely different method for solving eigenvalue problems will be presented 
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